Complementary Tree Domination in Subdivision graphs
 Dr.P.Vidhya
 EMG Yadava Women's College, Madurai- 625 014,India

S.Jayalakshmi
S.D.N.B Vaishnav College for Women (Autonomous)
Chennai-600 044,India

Abstract

A set D of a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a dominating set if every vertex in V-D is adjacent to some vertex in D .The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set. A dominating set D is called a complementary tree dominating set if the induced sub graph $\langle V-D\rangle$ is a tree. The minimum cardinality of a complementary tree dominating $(c t d)$ set is called the complementary tree domination number of G and it is denoted by $\gamma_{c t d}(G)$. A subdivision of an edge $e=u v$ of a graph G is the replacement of the edge e by a path (u, v, w). The graph obtained from G by sub dividing every edge e of G exactly once, is called the subdivision graph of G and is denoted by $S(G)$. In this paper, exact values of some standard graphs and bounds of complementary tree domination number in $S(G)$ are found.

Mathematics Subject Classification: 05C69

Keywords: domination number, subdivision graphs

1 Introduction

Graphs discussed in this paper are undirected and simple graphs .For a graph G , let $V(G)$ and $E(G)$ denote its vertex set and edge set respectively. For $v \in V(G)$, the neighbourhood $N(v)$ of v is the set of all vertices adjacent to v in $G . N[v]=N(v) \cup\{v\}$ is called the closed neighbourhood of v. A vertex $v \in V(G)$ is called a support if it is adjacent to a pendant vertex (ie) a vertex of degree one. The graph considered here are finite, undirected, without loops or multiple edges are connected with p vertices and q edges.

The concept of domination in graphs was introduced by Ore[4]. A set $D \subseteq V(G)$ is said to be a dominating set of G, if every vertex in $V(G)-D$ is adjacent to some vertex in D . D is said to be a minimal dominating set .

Definition 1.1. A set $\mathrm{D} \subseteq V(G)$ is said to be a complementary tree dominating set (ctd- set) if the induced sub graph $\langle V(G)-D\rangle$ is a tree. The minimum cardinality of a ctd -set is called the complementary tree domination number of G and it is denoted by $\gamma_{c t d}(G)$.

Definition 1.2. A subdivision of an edge $e=u v$ of a graph G is the replacement of the edge e by a path (u, v, w). The graph obtained from G by sub dividing every edge e of G exactly once, is called the subdivision graph of G and is denoted by $S(G)$.

2. Characterisation of Complementary Tree Dominating Sets in

Subdivision Graph $\mathbf{S}(\mathbf{G})$

We start with some basic results

Observation 2.1.

1.For any connected graph G, $\gamma_{c t d}(G) \leq \gamma_{c t d}[S(G)]$
2.For any spanning sub graph $S(H)$ of $S(G), \gamma_{c t d}[S(G)] \leq \gamma_{c t d}[S(H)]$

Preposition 2.2. Atmost $(p-1)$ vertices of $V(G)$ is a member of every ctd set.
Proof. Let $e=(u, v) \in V(G)$ and let v_{1} be a vertex subdivide e, then $u, v, v_{1} \in S(G)$. Let D be a ctd set of $S(G)$. If $v_{1} \in D$ then $\langle V-D\rangle$ is disconnected which is a contradiction. Therefore either u or $v \in D$

Theorem 2.3. A complementary tree dominating set $D \subseteq V(S(G))$ of a connected graph $G=(V, E)$ is minimal if and only if for each $v \in D$ and in a vertex of $V(G)$, one of the following condition holds.
i. $\quad v$ is not a isolated vertex of D.
ii. There exists a vertex u in $V(S(G))-D$ such that $N_{2}(u) \cap D=\{v\}$.
iii. $\quad N(v) \cap(V(S(G))-D)=\phi$.
iv. $D-\{v\}$ contains isolate vertex.
v. The sub graph $\langle V(S(G))-D\rangle \cup\{v\}$ of $S(G)$ is disconnected.

3. Bounds and some exact values of $\gamma_{c t u} S(G)$

Observations 3.1.

i. $\quad \gamma_{c t d}\left(S\left(C_{n}\right)\right)=2 p-2, \quad p \geq 3$
ii. $\quad \gamma_{c t d}\left(S\left(P_{n}\right)\right)=2 p-3, \quad p \geq 2$
iii. $\quad \gamma_{c t d}\left(S\left(w_{p}\right)\right)=2 p-1, \quad p \geq 4$

$$
=q+1
$$

iv. $\quad \gamma_{c t d}\left(S\left(K_{1, p-1}\right)\right)=p$
$=q+1$
v. $\quad \gamma_{c t d}\left(S\left(K_{p}\right)\right)=\frac{p^{2}-p+2}{2}$

$$
=q+1
$$

vi.
$\gamma_{c t d}\left(S\left(K_{m, n}\right)\right)=m+m n, \quad m \leq n$

$$
=2 q+3-3
$$

Theorem 3.2. For any connected graph $G \quad p \geq 2$, then $\gamma_{c t d}(S(G)) \geq 2$.
Proof. Every complementary tree dominating set of $S(G)$ contains at least one vertex of $V(G)$ and $V(S(G))-V(G)$.
Therefore,

$$
\gamma_{c t d}(S(G)) \geq 2
$$

Theorem 3.3. If $\gamma_{c t d}(G)=2$ if and only if $G \cong K_{2}$.
Proof. Assume $G \cong K_{2}$. Let $u, v \in E(G)$ and w be the vertex in $S(G)$ such that w is adjacent to u and v. Then $\{u, w\}$ is a ctd set of $S(G)$ and hence $\gamma_{c t d}(S(G))=2$.
Conversely, if $\gamma_{c t d}(S(G))=2$, then there exist a ctd set of D of $S(G)$ with $|D|=2$ and let $D=\{u, v\}$ such that $\langle V(S(G))-D\rangle$ is a tree.

Case (i):
$|V(S(G))-D|=1$
Let w be the vertex of $V(S(G))-D$ then w is either adjacent to any one of the vertex of D or adjacent to both. Therefore $S(G) \cong P_{3}$ (ie) $\quad G \cong K_{2}$.

Case (ii):
$|V(S(G))-D|>1$
Let v_{1} and v_{2} be the vertices of $\langle V(S(G))-D\rangle$. Then v_{1} and v_{2} are adjacent to any one of the vertices of D . Without loss of generality v_{1} is adjacent to u and v_{2} is adjacent to v then $S(G) \cong p_{4}$ which a contradiction is. For all values of $n \geq 2, S(G) \cong P_{2 n+1}$. Therefore $G \cong K_{2}$.

Theorem 3.4. For any connected graph G of order $p \geq 3, \gamma_{c t d}(S(G)) \leq 2 p-2$,
Also $\gamma_{c t d}(S(G))=2 p-2$ if and only if $G \cong C_{p}$.
Proof. Let $\{u v, v w\} \in E(G)$ and let x, y are the vertices in $S(G)$ such that x is subdivides $u v$ and y is subdivides $v w$. Then $V(S(G))-\{v, x\}$ is a ctd set of $S(G)$ and hence

$$
\begin{aligned}
\gamma_{c t d}(S(G)) & =2 p-1-2 \\
& =2 p-3 \\
& <2 p-2
\end{aligned}
$$

Suppose G contains a cycle C_{p} with edge set $E(G)=\{u v, v w, w x, \ldots \ldots y u\}$ and let $\left\{x_{1}, x_{2}, \ldots \ldots . . x_{p}\right\}$ be the vertices in $S(G)$ such that $x_{1}, x_{2}, \ldots \ldots . . x_{p}$ subdivides $u v, v w, w x, \ldots \ldots y u$ respectively. Then $V(S(G))-\{u, x\}$ is a ctd set of $S(G)$ and hence $\gamma_{c t d}(S(G))=2 p-2$.

Conversly, assume $G \cong C_{p} \quad, p \geq 3$.
We know $\gamma_{c t d}\left(C_{p}\right)=p-2$
$\gamma_{c t d}\left(S\left(C_{p}\right)\right)=\gamma_{c t d}\left(C_{2 p}\right)$

$$
=2 p-2 .
$$

Theorem 3.5. For the complete graph K_{p} then $\gamma_{c t d}\left(S\left(K_{p}\right)\right)=\frac{p^{2}-p+2}{2}$.
Proof. The result is true if $p=2$.
Suppose $p \geq 3$, Let D be a minimum ctd set of $S\left(K_{p}\right)$. Let $V\left(K_{p}\right)=\left\{v_{1}, v_{2}, \ldots \ldots \ldots v_{p}\right\}$ and $W=V\left(S\left(K_{p}\right)\right)-V\left(K_{p}\right)$
$=\left\{w_{1}, w_{2} \ldots \ldots . w_{r}\right\}$, where $r=\binom{p}{2}$ without loss of generality, we may assume that
$D=\left\{v_{1}, w_{1}, v_{2}, w_{2} \ldots \ldots \ldots \ldots \ldots . v_{p-1}, w_{p-1}, \ldots \ldots . w_{p+1}, w_{p+2} \ldots w_{r-p+3}\right\}$
therefore

$$
\begin{aligned}
|D| & =p-1+\frac{p(p-1)}{2}-(p-2) \\
& =\frac{p^{2}-p+2}{2} \\
\text { or } & \\
& =q+1 .
\end{aligned}
$$

Theorem 3.6. For the Complete bipartite graph $K_{m, n}, m \leq n$ then $\gamma_{c t d}\left(S\left(K_{m, n}\right)\right)=m+m n$.
Proof. Let $V_{1}=\left\{u_{1}, u_{2}, \ldots u_{m}\right\}$ and $V_{2}=\left\{v_{1}, v_{2}, \ldots \ldots . v_{n}\right\}$ be a bipartition of $K_{m, n}$. Let $w_{i j}(1 \leq i \leq m, 1 \leq j \leq n)$ be the vertex of $S\left(K_{m, n}\right)$ which is adjacent to u_{i} and v_{j}. Without loss of generality we may assume

$$
\begin{aligned}
& D=\binom{m}{\bigcup_{i=1}^{m} u_{i}} \cup\left(\bigcup_{i=1}^{m} \bigcup_{j=1}^{n} w_{i j}\right) \cup\left(\bigcup_{j=1}^{n} v_{j}\right)-\bigcup_{j=1}^{n-1} v_{j} \text { is a minimum ctd set of } S\left(K_{m, n}\right) . \\
& \begin{aligned}
\therefore \quad|D| & =m-1+m n+n-(n-1) \\
& =m-1+m n+n-n+1 \\
& =m+m n .
\end{aligned}
\end{aligned}
$$

Theorem 3.7. For the wheel $W_{p}=C_{p-1}+K_{1}$, then $\gamma_{c t d}\left(S\left(W_{p}\right)\right)=2 p-1$.
Proof. Let $u_{0}, u_{1}, \ldots \ldots . . u_{p-1}$ be the vertices of the wheel W_{p} with $\operatorname{deg}\left(u_{0}\right)=p-1, \quad v_{i}$ be the vertices of $S\left(W_{p}\right)$ adjacent to u_{0} and u_{i}. Let D be a minimum ctd set of $S\left(W_{p}\right)$ and w_{i} be the vertex subdividing the edge $u_{i} u_{i+1}, 1 \leq i \leq n-2$ and v_{i} be the vertex adjacent to $u_{0} \quad \& u_{i}$.
 u_{0}).

$$
\begin{aligned}
& =\mathrm{p}-1+\mathrm{p}-1+1 \\
& =2 \mathrm{p}-1 \\
\gamma_{\text {ctd }}\left(W_{p}\right) & =2 p-1 .
\end{aligned}
$$

Theorem 3.8. For the star graph $K_{1, p-1}$ then $\gamma_{c t d}\left(S\left(K_{1, p-1}\right)\right)=p$.

Proof. Let $\left\{v_{0}, v_{1}, v_{2}, \ldots \ldots v_{p-1}\right\}$ be the vertices of $K_{1, p-1}$, then u_{i} be the vertex subdivides $v_{0} v_{i}, 1 \leq i \leq p-1$. We know that the pendant vertices are members of ctd set. Let D be the minimum ctd set of $S(G$.)
$D=\bigcup_{i=1}^{p-1} v_{i} \cup\left\{\right.$ one of the vertex of $\left.u_{i}\right\}$

$$
\begin{aligned}
& |D|=p-1+1 \\
& \quad=p \\
& \therefore \gamma_{c t d} S\left(K_{1, p-1}\right)=p
\end{aligned}
$$

Theorem 3.9. If T is a tree T of order p which is not a star then
$m+s-1 \leq \gamma_{c t d}(S(T)) \leq 2 p-3$ where S denotes the number of supports and m denote the number of pendant vertices of T.

Proof. Let $V_{1}=\left\{u_{1}, u_{2}, \ldots . u_{m}\right\}$ be the set of all pendant vertices of T. V_{2} be the set of all supports of T and $V_{3}=\left\{v_{1}, v_{2}, \ldots . v_{m}\right\}$, where v_{i} is the vertex subdividing the edge incident with u_{i}. Let D be the minimum ctd set of $S(T)$ should contain $\left|v_{1} \cup v_{3}\right|-1$
$\therefore|D|=\left|v_{1} \cup v_{3}\right|-1$
and hence $\gamma_{c t d} S(T) \geq|D| \geq m+s-1$.
Now to prove the upper bound we know that $\gamma_{c t d}(T) \leq p-2$ Since
$V(S(T))=2 p-1$
therefore

$$
\begin{gathered}
\gamma_{c t d}(S(T)) \leq 2 p-1-2 \\
=2 p-3
\end{gathered}
$$

The lower bound equality holds in P_{3} and upper bound equality holds in P_{n}.

Theorem 3.10. For any connected (p, q) graph G, $\gamma_{c t d}(S(G))+\Delta(G) \leq 2 p=p+q$.
Proof. For any graph with p vertices, $\Delta(G) \leq p-1$
By observation,
$\gamma_{c t d}(G)+\Delta(G)=2 p \quad$ if $\quad G \cong C_{p}$
when $G \cong C_{p}$

$$
\gamma_{c t d} S\left(C_{p}\right)+\Delta\left(C_{p}\right)=2 p-2+2
$$

$$
=2 p
$$

$$
=p+q
$$

when $\quad G \cong P_{p} \quad \gamma_{c t d} S(G)+\Delta(G)=2 p-3+2$

$$
\begin{aligned}
& =2 p-1 \\
& =p+p-1 \\
& =p+q
\end{aligned}
$$

When

$$
G \cong K_{p}, \quad \gamma_{c t d} S(G)+\Delta(G)=q+1+p-1
$$

$$
=p+q
$$

When

$$
\begin{aligned}
G \cong W_{p}, \quad \gamma_{c t d} S(G)+\Delta(G) & =q+1+p-1 \\
& =p+q
\end{aligned}
$$

Theorem 3.11. For a connected graph G $p \geq 2$, then $\gamma_{c t d}(S(G)) \geq \gamma_{c t d}(G)+\delta(G)$ and Also, $\gamma_{c t d}(S(G))=\gamma_{c t d}(G)+\delta(G)$ iff $G \cong K_{1, p-1}$.

Proof. Assume $G \cong K_{1, p-1}$ then subdivides the edge set $v v_{i}$ in G by $w_{i}, \quad 1 \leq i \leq p-1$. Let D be the minimal ctd of G and D^{1} be the minimal ctd of $S(G)$. D contains all the vertices of G and contains atleast one members of $S(G)$.
Therefore

$$
\begin{aligned}
\left|D^{1}\right| & \geq|D|+1 \\
& =\gamma_{c t d}(G)+\delta(G)
\end{aligned}
$$

therefore
$\gamma_{c t d}(S(G)) \geq \gamma_{c t d}(G)+\delta(G)$
Conversly, assume $\gamma_{c t d}(S(G)) \geq \gamma_{c t d}(G)+\delta(G)$.Suppose $\delta(G)=1$, we know that $\gamma_{c t d}(G) \leq p-1$
therefore

$$
\begin{gathered}
\gamma_{c t d}(G) \leq p-1+1 \\
=p
\end{gathered}
$$

therefore
$G \cong K_{1, p-1}$

References

[1] S.Arumugam, Journal of the Indian Math. soc.,Vol.62,No.1-4(1996),274-282
[2] F. Harary, Graph Theory, Addison- Wesley, Reading Mass,1972.
[3] S. Muthammai, M. Bhanumathi, P. Vidhya Complementary Tree Domination Number of a Graph - International Mathematical forum Vol 62011.
[4] O.Ore, Theory of Graphs, Amer, Math. Soc. Colloq. Publ.,38,(1962).
[5] Teresa W.Haynes, Stephen T. Hedetnimi, Peter J.Salter, Fundamentals of Domination in Graphs, Marcel Decker,(1998)

