Complementary Tree Domination in Subdivision graphs

Dr.P.Vidhya

EMG Yadava Women's College, Madurai- 625 014,India

S.Jayalakshmi

S.D.N.B Vaishnav College for Women (Autonomous) Chennai-600 044,India

Abstract

A set D of a graph G = (V,E) is a dominating set if every vertex in V-D is adjacent to some vertex in D. The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set. A dominating set D is called a complementary tree dominating set if the induced sub graph $\langle V - D \rangle$ is a tree. The minimum cardinality of a complementary tree dominating (ctd) set is called the complementary tree domination number of G and it is denoted by $\gamma_{ctd}(G)$. A subdivision of an edge e = uv of a graph G is the replacement of the edge e by a path (u, v, w). The graph obtained from G by sub dividing every edge e of G exactly once, is called the subdivision graph of G and is denoted by S(G). In this paper, exact values of some standard graphs and bounds of complementary tree domination number in S(G) are found.

Mathematics Subject Classification: 05C69

Keywords: domination number, subdivision graphs

1 Introduction

Graphs discussed in this paper are undirected and simple graphs. For a graph G, let V(G) and E(G) denote its vertex set and edge set respectively. For $v \in V(G)$, the neighbourhood N(v) of v is the set of all vertices adjacent to v in $G \cdot N[v] = N(v) \cup \{v\}$ is called the closed neighbourhood of v. A vertex $v \in V(G)$ is called a support if it is adjacent to a pendant vertex (ie) a vertex of degree one. The graph considered here are finite, undirected, without loops or multiple edges are connected with p vertices and q edges.

The concept of domination in graphs was introduced by Ore[4]. A set $D \subseteq V(G)$ is said to be a dominating set of G, if every vertex in V(G)-D is adjacent to some vertex in D. D is said to be a minimal dominating set.

Definition 1.1. A set $D \subseteq V(G)$ is said to be a complementary tree dominating set (ctd- set) if the induced sub graph $\langle V(G) - D \rangle$ is a tree. The minimum cardinality of a *ctd* -set is called the complementary tree domination number of G and it is denoted by $\gamma_{ctd}(G)$.

© 2019 JETIR January 2019, Volume 6, Issue 1

Definition 1.2. A subdivision of an edge e = uv of a graph G is the replacement of the edge e by a path (u, v, w). The graph obtained from G by sub dividing every edge e of G exactly once, is called the subdivision graph of G and is denoted by S(G).

www.jetir.org (ISSN-2349-5162)

2. Characterisation of Complementary Tree Dominating Sets in

Subdivision Graph S(G)

We start with some basic results

Observation 2.1.

1. For any connected graph G, $\gamma_{ctd}(G) \le \gamma_{ctd}[S(G)]$ 2. For any spanning sub graph S(H) of S(G), $\gamma_{ctd}[S(G)] \le \gamma_{ctd}[S(H)]$

Preposition 2.2. Atmost (p-1) vertices of V(G) is a member of every ctd set.

Proof. Let $e = (u, v) \in V(G)$ and let v_1 be a vertex subdivide e, then $u, v, v_1 \in S(G)$. Let D be a ctd set of S(G). If $v_1 \in D$ then $\langle V - D \rangle$ is disconnected which is a contradiction. Therefore either u or $v \in D$

Theorem 2.3. A complementary tree dominating set $D \subseteq V(S(G))$ of a connected graph G = (V, E) is minimal if and only if for each $v \in D$ and in a vertex of V(G), one of the following condition holds.

- i. v is not a isolated vertex of D.
- ii. There exists a vertex u in V(S(G)) D such that $N_2(u) \cap D = \{v\}$.
- iii. $N(v) \cap (V(S(G)) D) = \phi$.
- iv. $D \{v\}$ contains isolate vertex.
- v. The sub graph $\langle V(S(G)) D \rangle \cup \{v\}$ of S(G) is disconnected.

3. Bounds and some exact values of $\gamma_{ctd}S(G)$

= a + 1

Observations 3.1.

i.
$$\gamma_{ctd}(S(C_n)) = 2p - 2, \quad p \ge 3$$

ii. $\gamma_{ctd}(S(P_n)) = 2p - 3, \quad p \ge 2$
iii. $\gamma_{ctd}(S(w_p)) = 2p - 1, \quad p \ge 4$
 $= q + 1$

iv.

v.
$$\gamma_{ctd} \left(S(K_p) \right) = \frac{p^2 - p + 2}{2}$$
$$= q + 1$$

 $\gamma_{ctd} \left(S(K_{1,p-1}) \right) = p$

vi.
$$\gamma_{ctd}(S(K_{m,n})) = m + mn, \quad m \le n$$

Theorem 3.2. For any connected graph $G \ p \ge 2$, then $\gamma_{ctd}(S(G)) \ge 2$.

Proof. Every complementary tree dominating set of S(G) contains at least one vertex of V(G) and V(S(G))-V(G).

Therefore,

$$\gamma_{ctd}(S(G)) \geq 2.$$

Theorem 3.3. If $\gamma_{ctd}(G) = 2$ if and only if $G \cong K_2$.

Proof. Assume $G \cong K_2$. Let $u, v \in E(G)$ and w be the vertex in S(G) such that w is adjacent to u and v. Then $\{u, w\}$ is a ctd set of S(G) and hence $\gamma_{ctd}(S(G)) = 2$. Conversely, if $\gamma_{ctd.}(S(G)) = 2$, then there exist a ctd set of D of S(G) with |D| = 2 and let $D = \{u, v\}$ such that $\langle V(S(G)) - D \rangle$ is a tree.

Case (i):

$$|V(S(G)) - D| = 1$$

Let w be the vertex of V(S(G)) - D then w is either adjacent to any one of the vertex of D or adjacent to both. Therefore $S(G) \cong P_3$ (ie) $G \cong K_2$.

Case(ii):

|V(S(G)) - D| > 1

Let v_1 and v_2 be the vertices of $\langle V(S(G)) - D \rangle$. Then v_1 and v_2 are adjacent to any one of the vertices of D. Without loss of generality v_1 is adjacent to u and v_2 is adjacent to v then $S(G) \cong p_4$ which a contradiction is. For all values of $n \ge 2$, $S(G) \cong P_{2n+1}$. Therefore $G \cong K_2$.

Theorem 3.4. For any connected graph G of order $p \ge 3$, $\gamma_{ctd}(S(G)) \le 2p-2$, Also $\gamma_{ctd}(S(G)) = 2p-2$ if and only if $G \cong C_p$.

Proof. Let $\{uv, vw\} \in E(G)$ and let x, y are the vertices in S(G) such that x is subdivides uv and y is subdivides vw. Then $V(S(G)) - \{v, x\}$ is a ctd set of S(G) and hence

$$\gamma_{ctd}(S(G)) = 2p - 1 - 2$$
$$= 2p - 3$$
$$< 2p - 2$$

© 2019 JETIR January 2019, Volume 6, Issue 1 www.jetir.org (ISSN-2349-5162) Suppose G contains a cycle C_p with edge set $E(G) = \{uv, vw, wx, \dots, yu\}$ and let $\{x_1, x_2, \dots, x_p\}$ be the vertices in S(G) such that x_1, x_2, \dots, x_p subdivides uv, vw, wx, \dots, yu respectively. Then $V(S(G)) - \{u, x\}$ is a ctd set of S(G) and hence $\gamma_{ctd}(S(G)) = 2p - 2$.

Conversly, assume $G \cong C_p$, $p \ge 3$. We know $\gamma_{ctd}(C_p) = p - 2$ $\gamma_{ctd}(S(C_p)) = \gamma_{ctd}(C_{2p})$

=2p-2.

Theorem 3.5. For the complete graph K_p then $\gamma_{ctd}(S(K_p)) = \frac{p^2 - p + 2}{2}$.

Proof. The result is true if p = 2. Suppose $p \ge 3$, Let D be a minimum ctd set of $S(K_p)$ Let $V(K_p) = \{v_1, v_2, \dots, v_p\}$ and $W = V(S(K_n)) - V(K_n)$

= { w_1, w_2, \dots, w_r }, where $r = \begin{pmatrix} p \\ 2 \end{pmatrix}$ without loss of generality, we may assume that $D = \{v_1, w_1, v_2, w_2, \dots, v_{p-1}, w_{p-1}, \dots, w_{p+1}, w_{p+2}, \dots, w_{r-p+3}\}$

therefore

$$|D| = p - 1 + \frac{p(p-1)}{2} - (p-2)$$
$$= \frac{p^2 - p + 2}{2}$$

or

= q + 1.

Theorem 3.6. For the Complete bipartite graph $K_{m,n}$, $m \le n$ then $\gamma_{ctd}(S(K_{m,n})) = m + mn$.

Let $V_1 = \{u_1, u_2, \dots, u_m\}$ and $V_2 = \{v_1, v_2, \dots, v_n\}$ be a bipartition of $K_{m,n}$. Let Proof. w_{ii} $(1 \le i \le m, 1 \le j \le n)$ be the vertex of $S(K_{m,n})$ which is adjacent to u_i and v_j . Without loss of generality we may assume

$$D = \left(\bigcup_{i=1}^{m} \bigcup_{j=1}^{n} \bigcup_{j=1}^{n} w_{ij}\right) \cup \left(\bigcup_{j=1}^{n} v_{j}\right) - \bigcup_{j=1}^{n-1} v_{j} \text{ is a minimum ctd set of } S(K_{m,n}).$$

$$\therefore |D| = m - 1 + mn + n - (n - 1)$$

$$= m - 1 + mn + n - n + 1$$

$$= m + mn.$$

Theorem 3.7. For the wheel $W_p = C_{p-1} + K_1$, then $\gamma_{ctd}(S(W_p)) = 2p - 1$.

Proof. Let u_0, u_1, \dots, u_{p-1} be the vertices of the wheel W_p with $\deg(u_0) = p - 1$, v_i be the vertices of $S(W_p)$ adjacent to u_0 and u_i . Let D be a minimum ctd set of $S(W_p)$ and w_i be the vertex subdividing the edge $u_i u_{i+1}$, $1 \le i \le n-2$ and v_i be the vertex adjacent to u_0 & u_i . Without loss of generality we may assume $D = \bigcup_{i=1}^{p-1} u_i \cup \bigcup_{i=1}^{p-1} w_i \cup$ (one of the neighbourhood of u_0). = p - 1 + p - 1 + 1

$$= p - 1 + p - 1 -$$
$$= 2p - 1$$
$$\gamma_{\text{ctd}} (W_p) = 2p - 1.$$

Theorem 3.8. For the star graph $K_{1,p-1}$ then $\gamma_{ctd}(S(K_{1,p-1})) = p.$

Proof. Let $\{v_0, v_1, v_2, \dots, v_{p-1}\}$ be the vertices of $K_{1,p-1}$, then u_i be the vertex subdivides v_0v_i , $1 \le i \le p-1$. We know that the pendant vertices are members of ctd set. Let D be the minimum ctd set of S(G).

$$D = \bigcup_{i=1}^{p-1} v_i \cup \{ \text{ one of the vertex of } u_i \}$$

$$|D| = p - 1 + 1$$
$$= p$$
$$\therefore \gamma_{ctd} S(K_{1,p-1}) = p$$

Theorem 3.9. If T is a tree T of order p which is not a star then

 $m + s - 1 \le \gamma_{ctd}(S(T)) \le 2p - 3$ where S denotes the number of supports and m denote the number of pendant vertices of T.

Proof. Let $V_1 = \{u_1, u_2, \dots, u_m\}$ be the set of all pendant vertices of T. V_2 be the set of all supports of T and $V_3 = \{v_1, v_2, \dots, v_m\}$, where v_i is the vertex subdividing the edge incident with u_i . Let D be the minimum ctd set of S(T) should contain $|v_1 \cup v_3| - 1$

 $\therefore |D| = |v_1 \cup v_3| - 1$ and hence $\gamma_{ctd} S(T) \ge |D| \ge m + s - 1$. Now to prove the upper bound we know that $\gamma_{ctd}(T) \le p - 2$ Since V(S(T)) = 2p-1therefore

$$\gamma_{ctd}(S(T)) \le 2p - 1 - 2$$
$$= 2p - 3$$

The lower bound equality holds in P_3 and upper bound equality holds in P_n .

Theorem 3.10. For any connected (p,q) graph G, $\gamma_{ctd}(S(G)) + \Delta(G) \le 2p = p + q$.

Proof. For any graph with p vertices, $\Delta(G) \le p-1$

By observation,

$$\begin{aligned} \gamma_{ctd}(G) + \Delta(G) &= 2p \quad \text{if} \quad G \cong C_p \\ \text{when} \quad G \cong C_p \quad \gamma_{ctd}S(C_p) + \Delta(C_p) = 2p - 2 + 2 \\ &= 2p \\ &= p + q \\ \text{when} \quad G \cong P_p \quad \gamma_{ctd}S(G) + \Delta(G) = 2p - 3 + 2 \\ &= 2p - 1 \\ &= p + p - 1 \\ &= p + q \\ \end{aligned}$$

$$When \qquad G \cong K_p, \quad \gamma_{ctd}S(G) + \Delta(G) = q + 1 + p - 1 \\ &= p + q \\ When \qquad G \cong W_p, \quad \gamma_{ctd}S(G) + \Delta(G) = q + 1 + p - 1 \\ &= p + q \\ \end{aligned}$$

Theorem 3.11. For a connected graph $G \ p \ge 2$, then $\gamma_{ctd}(S(G)) \ge \gamma_{ctd}(G) + \delta(G)$ and Also, $\gamma_{ctd}(S(G)) = \gamma_{ctd}(G) + \delta(G)$ iff $G \cong K_{1,p-1}$.

Proof. Assume $G \cong K_{1,p-1}$ then subdivides the edge set vv_i in G by w_i , $1 \le i \le p-1$. Let D be the minimal ctd of G and D^1 be the minimal ctd of S(G). D contains all the vertices of G and contains atleast one members of S(G). Therefore $\frac{|D^{1}| \ge |D| + 1}{= \gamma_{ctd}(G) + \delta(G)}$ therefore

 $\gamma_{ctd}(S(G)) \ge \gamma_{ctd}(G) + \delta(G)$

Conversly, assume $\gamma_{ctd}(S(G)) \ge \gamma_{ctd}(G) + \delta(G)$. Suppose $\delta(G) = 1$, we know that $\gamma_{ctd}(G) \le p - 1$ therefore $\gamma_{ctd}(G) \le p - 1 + 1$ = ptherefore $G \cong K_{1,p-1}$

References

- [1] S.Arumugam, Journal of the Indian Math. soc., Vol.62, No.1-4(1996), 274-282
- [2] F. Harary, Graph Theory, Addison- Wesley, Reading Mass, 1972.
- [3] S. Muthammai, M. Bhanumathi, P. Vidhya Complementary Tree Domination Number of a Graph International Mathematical forum Vol 6 2011.
- [4] O.Ore, Theory of Graphs, Amer, Math. Soc. Colloq. Publ., 38, (1962).
- [5] Teresa W.Haynes, Stephen T. Hedetnimi, Peter J.Salter, Fundamentals of Domination in Graphs, Marcel Decker, (1998)